Rings whose modules are weakly supplemented are perfect. Applications to certain ring extensions
نویسندگان
چکیده
منابع مشابه
Modules whose direct summands are FI-extending
A module $M$ is called FI-extending if every fully invariant submodule of $M$ is essential in a direct summand of $M$. It is not known whether a direct summand of an FI-extending module is also FI-extending. In this study, it is given some answers to the question that under what conditions a direct summand of an FI-extending module is an FI-extending module?
متن کاملfinite groups whose minimal subgroups are weakly h*-subgroups
let $g$ be a finite group. a subgroup $h$ of $g$ is called an $mathcal h $ -subgroup in $g$ if $n_g (h)cap h^gleq h$ for all $gin g$. a subgroup $h$ of $g$ is called a weakly $mathcal h^ast $-subgroup in $g$ if there exists a subgroup $k$ of $g$ such that $g=hk$ and $hcap k$ is an $mathcal h$-subgroup in $g$. we investigate the structure of the finite group $g$ under the assump...
متن کاملOn finitely generated modules whose first nonzero Fitting ideals are regular
A finitely generated $R$-module is said to be a module of type ($F_r$) if its $(r-1)$-th Fitting ideal is the zero ideal and its $r$-th Fitting ideal is a regular ideal. Let $R$ be a commutative ring and $N$ be a submodule of $R^n$ which is generated by columns of a matrix $A=(a_{ij})$ with $a_{ij}in R$ for all $1leq ileq n$, $jin Lambda$, where $Lambda $ is a (possibly infinite) index set. ...
متن کاملOn Rings Whose Associated Lie Rings Are Nilpotent
We call (i?) 1 the Lie ring associated with R, and denote it by 9Î. The question of how far the properties of SR determine those of R is of considerable interest, and has been studied extensively for the case when R is an algebra, but little is known of the situation in general. In an earlier paper the author investigated the effect of the nilpotency of 9î upon the structure of R if R contains ...
متن کاملMULTIPLICATION MODULES THAT ARE FINITELY GENERATED
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 2009
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-15104